Subject programme

- 1. Subject name / subject module: Elective Subject: Technical mechanics
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: The Institute of Informatics and Mechatronics
 - The person responsible for the subject: Szczutkowski Marek, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

							Teac	hing act	tivities w	ith the	tutor							
Form																		Total
of classes Mode of study	•	sow	ECTS	Laboratory work	sow	ECTS	 sow	ECTS		sow	ECTS	 sow	ECTS	sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				24	26	2												2
Part-time studies						2												2
Credit rigor				Graded assi	gmen	t												

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in laboratory classes	24
Preparing reports	10
Preparing homeworks	14
Participation in an exam / graded assignment / final grading	2
Total student workload	50
ECTS credits	2
* Student's workload related to practical forms	50
Student's workload in classes requiring direct participation of academic teachers	24

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Necessary mathematics skills in order to develop knowledge in machine design.

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	ecific learning outcomes for the subject			Methods for testing of				
Outcome symbol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes				
	Knowledge							
K_W01	K_W01_Student is able to define the basic concepts and phenomena of engineering mechanics.		Inquiry methods	Student learning activities				
K_W03	K_W03_Student has an ordered, theoretically founded general knowledge that allows him to solve selected problems in the area of engineering mechanics.	Laboratory work						
K_W04	Student can provide simple examples of the application of engineering mechanics in the field of mechatronics.							
	Skills							
K_U01	Student is able to gather, intergrate, interpret, analyze and present information in the area of engineering mechanics.	Laboratory work	Inquiry methods	Student learning activities				

Subject programme

Social competence						
К_К02	Student is ready to recognize knowledge in order to solve various problems in the area of engineering mechanics as well as is able to interact and work in a group trying to find the best solution.	Laboratory work	Inquiry methods	Student learning activities		

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Reports	bdb(5)	5*50%	2,5
Activity during classes	Example: db, dst, bdb(4,3,5)	Avg. (4+3+5)/3=4->4*20%	0,8
Homeworks	Example: ndst, bd, dst (2, 4, 3)	Avg. (2+4+3)/3=3->3*20%	0,6
Attendance	On 75% of all classes	6/8=0,75*5->3,75*10%	0,375

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

1. Basics: Object, role and structure of mechanics; Fundamental concepts and body models; Basic physical laws; Basic static concepts; Asjoys and the principle of the statics;

2. Force reduction: Reduction of the center force system; reduction of the flat force system; Fusges of any force reduction; Balance conditions; arrangement of two parallel forces;

3. Friction: Slip discs; shrink disc; rolling disc (resistance);

4. Mechanical geometry of flat figures and masses: Center of gravity and center of mass; Moments of inertia; Parallel degree II Transformation;

5. Internal forces in mechanical systems: External power of the internal forces; Internal component forces; Sign convention and relationship between internal forces;

11. Required teaching aids

Laboratory classes - specialist laboratory

12. Literature:

a. Basic literature:

Marghitu D.B., Mechanical Engineer's Handbook, Academic Press, 2001

a. Supplementary literature:

Bird J., Ross C., Mechanical Engineering Principle, Newnes, 2002

Meriam J.L., Kraige L.G., Engineering Mechanics, Volume 1, Statics, John Wiley & Sons, 2006

b. Internet sources:

https://soaneemrana.org/onewebmedia/MECHANICAL%20ENGINEERS%20HANDBOOK%20BY%20BAN%20B.%20MA NRGHITU.pdf, 12.2020

http://index-of.co.uk/Mathematics/Mechanical%20Engineering%20Principles.pdf, 12.2020

http://aghababaie.usc.ac.ir/files/1506464236211.pdf, 12.2020

https://www.hzg.de/imperia/md/content/hzg/institut_fuer_werkstoffforschung/wms/eng_mech_2006.pdf, 12.2020

Subject programme

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Szczutkowski Marek, dr inż.